Numerical Methods

Zi-Seok Lee
2023-11-06

Three Different Methods of Approximation

Euler’s Method
Improved Euler’s Method

Fourth-Order Runge-Kutta Method

Main Idea: Approximation by Iteration

 Each of these methods involves an iterative process

* We find a sequence of points (t, x;) that approximates the graph of a solution to

x = f(t x)

* Begin with an initial value (to,x(O)) = (0, xq)

* Choose a sufficiently small step size At and recursively generate t,,; = t, + At

Euler’s Method

Approximate the next step using a line:

y A
y(xn+2)
X numerical
yix) _~solution
yn+2
Xn+
yn+1 y(1)
Yn h'f(xnsyn)
>
Xn Xn+1 Xn+2 X

> Xy = X+ f (e, x5) - At

Improved Euler’s Method

* We use the average of two slopes from (t;, x;) to (tx+1, Xx+1)
my = f(tx, Xx)

ng = f(tk+1, Vi)

* Here, y;, = x;, + m; At is the point determined by the original Euler’s method.

e Then we have

m, +n
xk+1=xk+(k2 k)At

4th Order Runge-Kutta Method

 This method has served as a general-purpose solver for decades

m, + 2a, + 2b;, + ¢
xk+1=xk+(k k6 k k)At

e Let’s draw on the board to understand this method.

o my, = f(ty,x;) as in Euler’s method

At At
o ar = f(ty +7,yk) where y;, = xj +mk7
At At
o b, = f(t, +7,Zk) where z;, = x;, + Ak~

o Cx = f(tr+1, Wr) Where wy, = xi, + by, At

Why is the Runge-Kutta method “4th Order”?

1. Use the three methods to approximate the value of x(1) = e in the following system:
X = X, x(0) =1

Discuss how the errors change as you shorten the step size At

2. (Chaos; sensitive dependence on initial conditions) Sketch the graph of the system:
x =etsinx, x(0) = 0.3
(1) Use Euler’s method with At = 0.3, 0.001, 0.002, 0.003.
(2) Repeat for x(0) = 0.301, 0.302.

(3) Is there any change when using RK4 method?

Application to the Hodgkin-Huxley Model

import math HH(IO, TO):
import numpy as np dt = @0.01

import matplotlib.pyplot as plt = math.ceil(T0/dt)
gNao = 120

ENa = 115
gke = 36
= -12
= 0.3
= 10.6

alphaM(V):

return (2.5-0.1*%(V+65)) / (np.exp(2.5-0.1*(V+65)) -1)
betaM(V):

return 4*np.exp(-(V+65)/18)

alphaH(V):

return 0.07*np.exp(-(V+65)/20) .arange(0,T)*dt
betaH(V): .zeros([T,1])
return 1/(np.exp(3.0-0.1*(V+65))+1) .zeros([T,1])
alphaN(V): .zeros([T,1])
return (0.1-0.01*%(V+65)) / (np.exp(1-0.1*(V+65)) -1) .zeros([T,1])
betaN(V):

return 0.125*np.exp(-(V+65)/80) ~70

Application to the Hodgkin-Huxley Model

e Euler’s method:

for i in range(@, T-1):
V[i+1] = V[i] dt*(gNa@*m[i]**3*h[i]*(ENa-(V[i]+65)) + gKo@*n[i]**4*(EK-(V[i]+65)) + gLO*(EL-(V[i]+65)) + I0)
m[i+1] dt*(alphaM(V[i])*(1-m[i]) - betaM(V[i])*m[i])
h[i+1] dt*(alphaH(V[i])*(1-h[i]) - betaH(V[i])*h[i])
n[i+1] dt*(alphaN(V[i])*(1-n[i]) - betaN(V[i])*n[i])
return V,m,

+
+
+
+

Q. Should we use other methods, or is the Euler method enough?

Application to the Hodgkin-Huxley Model

 Atlow input current, examine the HH

dynamics
 Repeat for high input currents
* Does your model generate repeated spikes?

* Plot the gating variables (h,n) and describe

how the gates open and close during a spike

 Describe the dynamics of the conductances

V(t)_10=6_T0=100

20 40 60 80 100

References

 https://mark-kramer.github.io/Case-Studies-Python/HH.html

* Hirsch, Devaney, and Smale, Differential Equations, Dynamical Systems, and an

Introduction to Chaos

https://mark-kramer.github.io/Case-Studies-Python/HH.html

